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In the paper [1] the formulation of the problem of the viscous boundary layer
for constant electrical conductivity was examined. It was shown that, within
the restrictions of boundary layer theory, the tangential component of the
electric field does not change across the boundary layer, and the change in
the normal component of electric fleld can be calculated from the condition
Jo, = const .

Thus the problem of the boundary layer can be separated from that of the
external flow.

If the temperature of the electrode is much lower than that of the exter-
nal flow, then, due to the dependence of electrical conductivity on temper-
ature, a space charge conslderably greater than in the case ¢ = const may
be concentrated in the boundary layer. Below are derived the equations which
describe the change of the electric field across the boundary layer in this
case. It 1s shown that if (due to large temperature difference between the
flow core and the walls) the boundary layer resistance becomes comparable ‘to
the resistance of the flow core between the two electrodes, the boundary
layer problem cannot, in general, be separated from the problem of the exter-
nal flow. Estimates deduced from the boundary layer equatlons show that, for
the latter case, there exlsts inside the viscous boundary layer a thermal
sublayer', in which an intense generation of Joule heat occurs and which car-
ries the main electrical resistance. For simplicity, only the case of 1so-
tropilc conductivity 1s investigated.

1. A viscous boundary layer on an electrode in a magnetic field which is
parallel to it (this is the situation, as a rule, on electrodes in magneto-
hydrodynamic devices) carriles a space electric charge [1]. The space charge
denslty is determined by Ohm's law, and for Rpm <€1 and ¢ =0(7) =0(x,y,z)
is given by relation

4dnp, = —%_H rot,v-—-%z—-j-gl‘add (1.1)

Making boundary layer approximations [1] for the hydrodynamic quantities
in this equation, we find that the main part of the charge density in the
boundary layer 1s determinec by the relation

1 ., 8
bps = — 55 (e x H)y — o " 5 (1.2)
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Here, y 1s the coordinate normal to the surface next to the flow, the
subscript T denotes the projection of a vector on the tangent plane x, =z,
the superscript ° indicates that the corresponding quantities are evaluated
with accuracy up to terms of order unity (with respect to & , the boundary
layer thickness).

For ¢ = const , the second term (F) in Equation (1.2) goes to zero,
the charge density in the toundary layer 1is determined by the first term (4)
in (1.2); its influence on the distribution of the electric field in the
layer was studied in detail in [1]. The second term in (1.2) is connected
with the charge density which occurs as a result of the variation of the con-
ductivity. In view of the linearity of the equations of electrodynamics, the
influence of this charge on the distribution of the field in the boundary
layer may be studied separately. Besides, in a number of cases, which are
mainly to be investigated here, the charge density connected with the vari-
ation of the conductivity (B) is significantly greater than the charge den-
sity connected with the variatlon of the velocity through the boundary layer
(4). In fact, if the mean electrical conductivity in the boundary layer is
denoted by o,. the ratio of the terms in the right-hand side of (1.2} 1s of

order B/A~f%6/50 UH. If, in addition,
o s UH
Ty Ez'ifg—_‘ (1.3)
then 5
B S 1ok N S o VR
T ~ ~TT>1 or T ~To, = L S—G—~ 5% (1.4)

0
Here, pr 1s the internal resistance of the flow core between two elec-
trodes ( ¢, = const ) and r, is the resistance of the boundary layer. In
what follows, we shall be interested in the conditions for which 7y 2% r.
This may occur 1f the temperatures of the flow core and the wall are very
different. In fact, s Teo
vl s
S oy G
w
The derivative ar/ay 1s bounded, while ¢ 1s a rapidly changing func-
tion of temperature; therefore, ry,- e« for 7T, O . Thus it is clear that,
by cooling the wall, the condition
ror (1.5)
can be fulfilled, as will be assumed in the following.

The condition (1.3) is fulfilled as a rule in magnetohydrodynamic genera-
tor and accelerator flows. For large external locads of an mhd generator,
condition (1.3) may be violated. In these cases, notwithstanding the vari-
ation of the conductivity, the charge density in the boundary layer 1s deter-
mined by the first term 4 4in (1.2), and all the conclusions of paper [ 1]
are valid.

In the following, we shall be interested in a boundary layer on a "cold"
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electrode, for which relations (1.3) to (1.5) hold. Then the charge density
in the boundary layer is given by the relation

np. = — 5 " 52 (1.6)
If there are no strong external electrlc fields parallel to the wall, then
from Equations div § = O and rot E = O it follows (this is very easy to
show by making use of the estimates in Section 2 of the given paper) that,
within the boundary layer approximation, 0j,°/dy = 0 and, therfore,
I = i (z, z) in Equation (1.6).

From Equation div E = 4mp, and (1.6) we obtain, within the restrictions
of boundary layer theory,

oE 1 ., ds
73—;{:—_67]” By (1.7)

From thls, we obtain for the distribution of electric potential in the

boundary layer d
Y+ ¢y (2, 2) (1.8)

)

y

¢ (23,2 = — j,°\

) 0

Here, @.(x:Z) is the distribution of potential over the electrode sur-
face. If the electrode is continuous, then ¢,= const .

Let the electrode be continuous; then E., = 0. From (1.8) we obtain
the following relations for the distribution of the tangential component of
the electric field across the boundary layer

dE, 0% 8 (1 O +oldy _ 9 o

3y ='m=a(—c—)* Bro = g7 10" Y5 = 52 Uv'7o)
0 (1.9)
5

dE, 0 a (1y 9 sofdy _ 0 (o

= e e ) Bxo = 57 1v S?_'«?z‘(’“ ")
0

From this it follows that in the flow core there 1s a tangentlal electric
field comparable in magnitude with the normal component of the electric field.
In fact, in view of (1.5) and (1.9),

Epo L L 1.10
2~ — < (1.10)

~ h
It is evident, then, that the tangential compohent of the electric fileld
must be included in the formulation of the problem in the flow core,

00 Ouol0

For o ® g, , the ratio Eys /Eio ~L /8> 1, and, therefore, within
the approximations of boundary layer theory, 1t may be assumed that the tan-
gential component of the electrlc field does not change across the boundary
layer [1]. The appearance of the tangential component is connected with the
high charge concentration near the cold wall, which creates near the wall
the high electrical filelds that are required for flow of the given current

density (1.3) across a boundary layer wlth low conductlvity
E o}
yw ©0
‘E ~—5_>1
w
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Thus, the relations for the change of electric field across the boundary
layer differ from the conditions on & surface of discontinuity carrying an
electric charge. This fact, which 1s unexpected, in view of the small thick-
ness of the bounday layer, may be obtained from an investigation of Poisson's
equation for the electric potential, if the right-hand side of Poisson's
equation is given in accordance with (1.6).

Let us consider a strip of width & 4in which the charge density is dis-

tributed according to (1.6). The distribution of electric field in the strip
1s then determined by Equation

Ag = — bmp, = — ]'uo‘é%'—;‘ (@ (2,00 =0) (1.11)
From this, using Green's formula [2] for the half-strip, we obtain
© 8 1
=L " (Z) 5— L dy —
@ (20, 8) = 7 | §In e 1 e

—00
o0

1 ¢ . y—38 dzx —
I S‘P % ) i e =t

1 ¢ 1 Iy (@) 1 iy’ (@
T S In (x——xo> 5 (z,9) +zu _S Viz—zf 16 060

Or, integrating by parts in the first integral,

. v I’y @) y—§
P (20, 8) = 57— }m dxx e E— R TG (1.12)
" o y—90
T S (z, 6>hm(r—ro)z+(y_6)a az

—0Q

The last integral on the right-hand side of (1.12) is different from zerc
since the integrand has a singularity at the point { x = Xos ¥y =28 ), and
is equal to — deplx,,8) . Therefore,

@ (75:0) = — \ d \ ql(z,Jl Grrrw—or Y (
—O g

The main contribution to the value of the integral in (1.13) comes from
the neighborhood of y = x,. Integration outside that nelghborhood gives a
result ~ 8§ (the function J, /0 1s bounded) and, therefore, within bound-
ary layer theory, these terms may be neglected. On integration with respect
to x in the neighborhood of x = xs, the function

I’ (2) 1 0 (z,y) = J,° (2) | 0 (0.7
Integrating with respect to x 1in (1.13), we obtain

dy

P (1.14)

9 (20.0) = —/,° (= 0>g
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This result follows from (1.8).

The result contained in Equations (1.8) and (1.14%) was obtained on the
basis of an analysis of Equations div B = 4np, and div J = O . At first
glance, this result contradicts Equation rot B = 0 , since from this equa-
tion, for the plane case for example, 1t follows that

%8y _%: _ (1.15)

oz oy
In fact, if the characteristic length for the variation of x, were & ,

then, because of (1.10), it would follow from (1.15) that ag,/ay = O 1in the
boundary layer, rather than the result in {1.9). Actually, there is no con-
tradiction, The charasteristic length for the variation of E, 1s much smal-
ler than the quantity & and is comparable to the thickness of the cold sub-
layer, in which the main change in the electrical conductivity occurs and
where g, is very large. The relation between these quantitlies is such that
the two terms in (1.15) are of the same order. The following section is devo-
ted to an examination of this question.

2. PFrom Equations{1.9) it follows that the characteristic length (we de~
note it by &%) over which BT changes corresponds to the characteristic dis-
tance across the boundary layer in which the electrical conductivity o chan-
ges from the value ¢, to the value g, since it is precisely the layer of
thickness 8% that determines the resistance r,.

Since ¢ = o(p,T), it is clear that the quantity 8* determines in some
sense the thickness of the thermal boundary layer (or sublayer). Existing
calculations for the magnetohydrodynamic boundary layer [3] show that, for
a weakly ilonized medium (P ~ 1) , there exists near the cold wall a region
of significant heating of the gas, and the temperature profile has an essen-
tially nonmonotonous character, with maximum near the wall. Below, it will
be shown that the phenomenon is characteristic for the boundary layer on a
cold electrode, Thus it is clear that the thickness of the thermal boundary
layer &% , defined as the distance to the polnt nearest the wall with tem-
perature I = T, , will be smaller than the thickness of the viscous boundary
layer & . Comparing the viscous and electromagnetic terms in the equation
of motion, we obtain, in view of (1.3),

U e U o 1 U 12 - UL
i~ T "“SEP“'_"_%I;L"'W(”L) ' (r= ) ey

From this it follows that the thickness of a boundary layer with substan-
tial magnetohydrodynamic effect {mr ~ 1} is determined, as 1In ordinary
hydrodynamics, by the relation & ~ L//R .

On the other hand, comparing viscous and electromagnetic terms in the
energy equation, we obtain

o~ e o—

nier Ut ot 4 et r & (2.2)
& 78 S UH mLlo, rn h
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(where o¢* is the characteristic magnitude of the electrical conductivity in
the cold layer, &%/ g* ~ r,) . PFrom this it follows that if ¢* ~ g, , then
the viscous and electeromagnetic terms are comparable in magnitude. On the
other hand, 1f the electrode 1s cold and {1.5) holds, then the main heating
within the thermal layer (§*) 1s due to Joule heating. Thus the quantity &§*
can be determined by equating the electromagnetic term in the enegy equation
with the term which determines the electrical conductivity. Since, for a
cold wall, the change of temperature in the thermal layer is of order T, ,
we obtain the following relation for determining s*:

1'2

Tm

Using the relation ¢pT /U?~ 1/ (y — 1) M?® and (1.3), (1.5), the rela-
tion (2.3) may be rewritten in the form

bl L S e S S
7 Tt —1) M*PRmL o, > (y—1)M*PRmL "h

From this we obtain an estimate of the thermal layer thickness,

LSS S (2.4

L ™~ (t—1) M2PRmL i 4)

The relation (2.4) shows that the thermal layer or the layer of high elec-
trical resistance is much thinner than the viscous dynamical boundary layer

(8% / & ~ R—).

From the physical point of view, the generation of a thin layer of sharp
temperature change near a cold wall 1s plausible,since 1t is connected with
the existence of strong heat sources near the wall, which are due to the flow
of current ecross a layer of cold gas. The presence of this layer 1s
explained by the fact that near a cold electrode there 1s strong heating of
the gas, leading to a nonmonotonous temperature profile which is steep near
the wall,

It 1s easy to verify, on the basis of (2.4),(1.3) and (1.5) and the rela-
tion 8*/a* ~ r,, that in Equation (1.15) the two terms have the same order
of magnitude, as stated at the end of Sectilon 1.

3, Because of the existence at a cold electrode of & thin layer with a
concentration of large electric space charge, the estimates made in [1] for
the magnitude of the electromagnetic force are not applicable in the given
case.

From relation (1,10) and (1.5) 1t follows that
UH

E1~—c—
and therefore the estimates made in [ 1] for the tangential component of the
electromagnetic force are valid. Therefore, in projections of the momentum
equations onto the tangent plane, the term p,B 1n the expression for the
force may be neglected, and these equations wlll have the same form as in (1],

The ratio of the normal component of force connected with the space charge
p,E, to the normal component of force acting on the current c"(J X H), in
the cold layer 1is given, in view of (1.6} and (2.4), by the following form:
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peEn S0 U \L.“Z ( h

CT(xH),~ 5" 7 @\

5 1 0 g
) — [(y — 1) M2PRmL[? (3.1
Ry,
Therefore, for high Reynolds and Mach numbers, it could turn out that
peEpn > ¢ 1(jx H),. Then the normal component of the momentum equation gives

By = Peln (3.2)

—~ el (i
If Pefn ¢ (J><n)n then, within boundary layer theory, it follows from
(3.2) that ap/éy =0, If peEn S>> ¢} (j>(H),, then the change of pressure
across the cold layer may become significant

ap Ap Uz R? <Ik_\)4 L) [y — () PAR)2 (3.3)

p “plf "¢ R,

It 1s evident that for PeLn—~ ¢ (jxH)y, the change of pressure in the
cold sublayer and in the entire boundary layer is small (Ap <€ p). For
Pefn 3> ¢V (jxX H)p, and not too large R and ¥ , we have Ap/p<Z 1. In these
cases, ap/pg = 0 1in the boundary layer equations, If Ap > p,then equation
(3.2) must be used in the system of boundary layer equations.

It is easy to prove that the convective current (g,v) in the expression
for the cwrrent density may be neglected, since velocilies are small in the
cold layer.

Thus, for Ap/ p<€1 the boundary layer equations for a cold electrode
have the same form as in [1], with the only difference that the tangential
component of the electric field is determined, not by the solution of the
outer problem, but by Equations (1.9). For Ap/p=1 the system of equations
1s made more complicated by the variation of pressure across the boundary
layer, In connection with this, we obtain from (3.2) and (1.6) the equation
for the pressure distributilon \ |

- R . og __’______‘
P = Pt o I, (‘sz s

8n oo”) 34

4, The preceding analysis shows that, in the formulation of the problem
of the boundary layer at a cold electrode, in satisfying conditions (1.5) it
is necessary to take into account that the electric fleld in the boundar
layer is determined as a solution of the outer problem {in the flow coreX as
well a8 a solution of the boundary layer problem (it depends on the boundary
layer resistance). On the other hand, the solutlon of the flow core problem
depends on the distribution of parameters across the boundary layer, through
the magnitude >f the tangential component of the electric field. In connec-
tion with this, for r ~ r, the outer problem” does not differ 1n principle
from the boundary layer problem, Of course, the division of the flow between
the boundary layer and the flow core simplifies the problem. Nevertheless,
the boundary layer and flow core problems in that case must be solved simul-
taneously and joined at the outer edge of the boundary layer.

In paper [3], in the calculation of the variation of the potential 1n a
boundary layer, it was found that g, = gu(x) , but the authcr did not pay
attention to the fact that this 1s connected with the presence of an axial
electric field, which should have been taken into account in formulating the
problem for both the flow core and the bounda. r layer.

We emphasize once more that the magnitude of the axial fleld depends in
an essential way on the rate of change of the parameters along the length of
the charnel {see {1.9)). If the parameters 1n the flow core do not change
along the length of the channel and the boundary layer i3 nearly self-similar
(ro % const), then 6E_/dy = 0 in the boundary layer.

1
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