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In the paper [1] the formulation of the problem of the viscous boundary layer 
for constant electrical conductivity was examined. It was shown that, within 
the restrictions of boundary layer theory, the tangential component of the 
electric field does not change across the boundary layer, and the change in 
the normal component of electric field can be calculated from the condition 
Jo, = const . 

Thus the problem of the boundary layer can be separated from that of the 
external flow. 

If the temperature of the electrode is much lower than that of the exter- 
nal flow, then, due to the dependence of electrical conductivity on temper- 
ature, a space charge considerably greater than in the case c = const may 
be concentrated In the boundary layer. Below are derived the equations which 
describe the change of tine electric field across the boundary layer in this 
case. It is shown that if (due to large temperature difference between the 
flow core and the w’alls) the boundary layer resistance becomes comparable to 
the resistance of the flow core between the two electrodes, the boundary 
layer problem cannot, in general, be separated from the problem of the exter- 
nal flow. Estimates deduced from the boundary layer equations show that, for 
the latter case, there exists inside the viscous boundary layer a “thermal 
sublayer”, In which an intense generation of Joule heat occurs and which car- 
ries the main electrical resistance. For simplicity, only the case of lso- 
tropic conductivity is Investigated. 

1. A viscous boundary layer on an electrode in a magnetic field which is 

parallel to it (this is the situation, as a rule, on electrodes in magneto- 

hydrodynamic devices) carries a space electric charge [l]. The space charge 

density is determined by Ohm’s law, and for &<I and o=o(T) =u(x,y,z] 

is given bv relation 

45~~~ = -_Hrotv--&j.grada (I-1) 

Making boundary layer approximations [1] for the hydrodynamic quantities 

in this equation, we find that the main part of the charge density in the 

boundary layer is determinei by the relation 

(l-2) 
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Here, I/ is the coordinate normal to the surface next to the flow, the 

subscript 7 denotes the projection of a vector on the tangent plane X, Z, 

the superscript ’ Indicates that the corresponding quantities are evaluated 

with accuracy up to terms of order unity (with respect to 6 , the boundary 

layer thickness). 

For u = const , the second term (B) in Equation (1.2) goes to zero, 

the charge density in the boundary layer is determined by the first term (A) 

in (1.2); its influence on the distribution of the electric field in the 

layer was studied in detail in [ 11. The second term in (1.2) is connected 

with the charge density which occurs as a result of the variation of the con- 

ductivity. In view of the linearity of the equations of electrodynamics, the 

Influence of this charge on the distribution of the field In the boundary 

layer may be studied separately. Besides, In a number of cases, which are 

mainly to be Investigated here, the charge density connected with the vari- 

ation of the conductivity (B) is significantly greater than the charge den- 

sity connected with the variation of the velocity through the boundary layer 

b). In fact, if the mean electrical conductivity in the boundary layer is 

denoted by oO, the ratio of the terms in the right-hand side of (1.2) Is of 

order B/A--j\clao UH. If, In addition, 

Q UH 
iv" 2 + (1.3) 

Here, p is the Internal resistance of the flow core between two elec- 

trodes ( o, = const ) and r,, Is the resistance of the boundary layer. In 

what follows, we shall be Interested In the conditions for which ro 2 J’. 

This may occur if the temperatures of the flow core and the wall are very 

different. In fact, 

The derivative al& is bounded, while u is a rapidly changing func- 

tion of temperature; therefore, r,+= for TM-O. Thus it Is clear that, 

by cooling the wall, the condition 

x0 2 r (f-5) 
can be fulfilled, as will be assumed In the following. 

The condition (1.3) Is fulfilled as a rule In magnetohydrodynamic genera- 

tor and accelerator flows. For large external loads of an mhd generator, 

condition (1.3) may be violated. In these cases, notwithstanding the varl- 

atlon of the conductivity, the charge density In the boundary layer Is deter- 

mined by the first term A In (1.2), and all the conclusions of paper [l] 

are valid. 

In the following, we shall be Interested In a boundary layer on a “cold” 
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electrode, for which relatsons (1.3) to (1.5) hold. Then the charge density 

in the boundary layer is given by the relation 

(1.6) 
If there are no strong external electric fields parallel to the wall, then 

from Equations div j = 0 and rot E = 0 it follows (this is very easy to 

show by making use of the estimates in Section 2 of the given paper) that, 

within the boundary layer approximation, ajuo / dy = 0 and, therf ore, 
iv” zzz iv0 (x, Z) in Equation (1.6). 

From Equatio\div E = 451~~ and (1.6) we obtain, within the restrictions 

of boundary layer theory, 
1 . o 30 aE, 

8Y 
---gzJv -Jy (l-7) 

From this, we obtain for the distribution of electric potential in the 

boundary layer 

cp (V/,4 = 7 i/s $ - + %I (5, 4 (1.8) 
0 

Here, cp,(x,z) is the distribution of potential over the electrode sur- 

face. If the electrode is continuous, then cp.= const . 

Let the electrode be continuous; then E,, = 0. From (1.8) we obtain 

the’followlng relations for the distribution of the tangential component of 

the electric field across the boundary layer 

a-% a2’p a i,” 
ay=-azay =al: 0 i ) -1 -Cm = 

0 (1.9) 

aE, a2'p a i," 

ti --ayaz=K YT 9 ( ) E,, = A juoi-$ = A(j;“r,) 
0 

From this it follows that In the flow core there is a tangential electric 

field comparable in magnitude with the normal component of the electric field. 

In fact, in view of (1.5) and (1.9), 

(1.10) 

It is evident, then, that the tangential compohent of the electric field 

must be Included in the formulation of the problem in the flow core, 

For o a urn , the ratio E,, / E,, -L / 6 > 1, and, therefore, within 

the approximations of boundary layer theory, it may be assumed that the tan- 

gential component of the electric field does not change across the boundary 

layer [l] . The appearance of the tangential component is connected with the 

high charge concentration near the cold wall, which creates near the wall 

the high electrical fields that are required for flow of the given current 

density (1.3) across a boundary layer with low conductivity 



Thus, the relations for the change 

layer differ from the aondltlons on a 

electric charge. This fact, which 1s 
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of electric field aaross the boundary 

surface of discontinuity carrying an 

unexpected, ln view of the small thick 
ness of the bounday layer, may be obtained from an investigation of Poisson's 

equation for the electric potential, If the right-hand aide of Polsaon’s 

equation Is given In accordance with (1.6). 

Let us consider a strip of width b In which the charge density Is dls- 

trlbuted according to (1.6). The distribution of electric field In the strip 
is then determined by Equation 

Prom this, using Green's formula 12) for the half-strip, we obtain 

Or, Integrating by parts In the first Integral, 

03 7 (xl 
‘p (6 6) = & \ dx \ &(, _&_;, _ Q2 44 - 

u c 9 
-co 0 

1 Op 
-- 

‘n 
s cp (2,s) lim 

Y - 6 dx 
y*& @ - 42 -1 (Y - @a 

--co 

(1.11). 

(1.12) 

The last Integral on the right-hand side of (1.12) is different from zero 

since the lntegrand has a singularity at the point ( I: = x0, I/ = 6 ), and 

is equal to - $cp(xO ,a) . Therefore, 

The maln contribution to the value of the integral in (1.13) comes from 

the neighborhood of x = +,. Integration outside that neighborhood gives a 
result * b (the function J,"/u Is bounded) and, therefore, within bound- 
arylayer theory, these terms may be neglected. On Integration with respect 
to x In the neighborhood of x = x0, the function 

i,," (5) 1 G (x,9/) = jJ10 (JJ / G (W/). 

Integrating with respect to x in (1.13), we obtain 

(1.14) 



1032 O.A. Llublmv 

This result follows from ‘(1.8). 

The result contained In Equations (1.8) and (1.14) was obtained on the 

basis of an analysis of Equations div B = kp, and dlv j =+ 0 . At first 

glance, this result contradicts Equation rot 8 = 0 , since from this equa- 

tion, for the plane case for example, it follows that 

dEg aE, 
-I--= 

ax a$ 
0 (1.15) 

In fact, if the characteristic length for the variation of Et were b , 

then, because of (l.lO), it would follow from (1.15) that a.&/av = 0 In the 

boundary layer, rather than the result in (1.9). Actually, there Is no con- 

tradiction. The charaaterlstlc length for the vari&lon of if, is much smal- 

ler than the quantity b and is comparable to the thickness of the cold sub- 

layer, in which the main change in the electrical conductivity OCCI.WS and 

where E, is very large. The relation between these quantities is such that 

the two terms In (1.15) are of the same order. The following section is devo- 

ted to an examination of this question. 

2. From Equations(l.9) It follows that the characteristic length (we de- 

note it by a*) over which E7 changes corresponds to the characteristic dis- 

tance across the boundary layer in whi‘ch the electrical conductivity a chan- 

ges from the value or to the value o_,, since it is precisely the layer of 

thickness 6” that determines the resistance r,. 

Since v = o(~,T), it is clear that the quantity b* determines In some 

sense the thickness of the thermal boundary layer (or sublayer). Existing 

calculations for the magnetohydrodynamic boundary layer [33 show that, for 

a weakly ionized medium (p .-. 1) , there exists near the cold wall a region 

of significant heating of the gas , and the temperature profile has an essen- 

tially nonmonotonous character, with maxImum near the wall. Below, it will 

be shown that the phenomenon is characteristic for the boundary layer on a 

cold electrode. Thus it is clear that the thickness of the thermal boundary 

layer b* , defined as the distance to the point nearest the wall with tem- 

perature P s T, , will be smaller than the thickness of the viscous boundary 

layer b . Comparing the viscous and electromagnetic terms in the equation 

of motion, we obtain, in view of (1.3), 

From this It follows that the thickness of a boundary layer with substan- 

tial magnetohydrodynamic effect (mL _ 1) is determined, as in ordinary 

hydrodynamics, by the relation b w L/a . 

On the other hand, comparing viscous and electromagnetic terms in the 
energy equation, we obtain 
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(where o* Is the characteristic magnitude of the electrical conductivity In 

the cold layer, a*/ u* - r0 ) . From this It follows that If o* - orn , then 
the viscous and ele&teromagnetlc terms are comparable In magnitude. On the 

other hand, if the electrode Is cold and (1.5) holds, then the main heating 

within the thermal layer (6”) Is due to Joule heating. Thus the quantity b* 

can be determined by equating the electromagnetic term In the enegy equation 

with the term which determines the electrical conductivity. Since, for a 
cold wall, the change of temperature In the thermal layer 1s of order T, , 

we obtain the following relation for determining b*: 

(2.3) 

Using the relation C$ ! Ua - 1 ! (y - 1) p and (1.3), (1.5), the rela- 

tion (2.3) may be rewritten In the form 

6” i .C< i S' 
3- (r-i)hiaPRmL q,, 2'(r-i)MzPRmL h 

From this we obtain an estimate of the thermal layer thickness, 

6*< I 
L ~(y--l)h!laPRmL 4 (2.4) 

The relation (2.4) shows that the thermal layer or the layer of high elec- 

trical resistance Is much thinner than the viscous dynamical boundary layer 

(6* I 6 - R-V'). 

From the physical point of view, the generation of a thin layer of sharp 

temperature change near a cold wall Is plauslble,slnce It Is connected with 

the existence of strong heat sources near the wall, which are due to the flow 

of current ecross a layer of cold gas. The presence of this layer Is 

explained by the fact that near a cold electrode there 1s strong heating of 

the gas, leading to a nonmonotonous temperature profile which Is steep near 

the wall. 

It Is easy to verify, on the basis of (2.4),(1.3) and (1.5) and the rela- 

tion 6*/a* _ rO, that in Equation (1.15) the two terms have the jame order 

of magnitude, as stated at the end of Section 1. 

3. Because of the existence at a cold electrode of a thin layer with a 
concentration of large electric space charge, the estimates made In [ 11 for 
the magnitude of the electromagnetic force are not applicable In the given 
case. 

From relation (1.10) and (1.5) it follows that 

and therefore the estimates made In [l] for the tangential component of the 
electromagnetic force are valid. Therefore, In projections of the momentum 
equations onto the tangent plane, the term p,B ln the expression for the 
force may be neglected, and these equations will have the same form asln[lj. 

The ratio of the normal component of force connected with the space charge 
P&P, to the normal component of force acting on the current o-l(j x H), In 
the cold layer Is given, In view of (1.6) and (2.10, by the following form: 
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(3.1) 

Therefore, for high Reynolds and Mach numbers, it could turn out that 
~8, > c-%x Hh Then the normal component of the momentum equation gives 

1f P&, - c-l (jx W, then, within boundary layer theory, It follows from 
(3.2) that ;tp/ay = 0 . If P&,, > c-1 (j:,: H),, then the change of pressure 
across the cold layer may become significant 

(3.3) 

It Is evident that for P&,, - C-l (jX H), the change of pressure in the 
cold sublayqf and In the entire boundary layer is small (Ap < p). 
P$, > c-l (JXH), and not too large R and M 
cases, ap/a 

we have AJJI’P~ 1. 
;?these 

(3.2) must 4 
- 0 In the boundary layer equatio;s. If i\p 3 p,then equation 

e used In the system of boundary layer equations. 

It is easy to prove that the convective current (; v) in the expression 
for the current density may be neglected, since velocities are small in the 
cold layer. 

Thus, for ApIp< the boundary layer equations for a cold electrode 
have the same form as in [l], with the only difference that the tangential 
component of the electric field Is determined, not by the solution of the 
outer problem, but by Equations (1.9). For Ap /p> 1 the system of equations 
:;ygde more complicated by the variation of pressure across the boundary 

In coMectlon with this, we obtain from (3.2) and (1.6) the equation 
for tie pressure distribution 

(3.4) 

4. The preceding analysis shows that, In the formulation of the roblem 
of the boundary layer at a cold electrode, In satisfying conditions 1.5) it 
is necesfmry to take Into account that the electric field In the boundar 
layer Is determined as a solution of the outer problem (In the flow core T as 
well as a solution of the boundary layer problem (It depends on the boundary 
layer resistance). On the other hand, the solution of the flow core problem 
depends on the distribution of parameters across the boundary layer, through 
the magnitude Jf the tangential component of the electric field. In connec- 
tion with this, for F - F. the outer problem’does not differ in principle 
from the boundary layer problem. Of course, the division of the flow between 
the boundary layer and the flow core slmpllfles the problem. Nevertheless, 
the boundary layer and flow core problems ln that case must be solved slmul- 
taneously and Joined at the outer edge of the boundary layer. 

In paper [3],: in the calculation of the variation of the potential in a 
boundary layer, It was found that (p_ = %(x) , but the authcr did not pay 
attention to the fact that this Is CoMected with the presence of an axial 
electric field, which should have been takeI, Into account in formulating the 
problem for both the flow core and the bounda& r layer. 

We emphasize once more that the magnitude 0: the axial fieid depends In 
an eeeentlal way on the rate of change of the parameters along the length of 
the channel (see (1.9)). If the parameters in the flow core do not change 
along the length of the channel and the boundary layer is nearly self-similar 
(F. 25 COn.st), then oET / &J = 0 In the boundary layer. 
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